A Unified View of Hybrid Simulation Algorithms

NEES Hybrid Simulation Workshop
University of California at Berkeley
April 24, 2006

M.V. Sivaselvan
Assistant Professor
Department of Civil, Environmental and Architectural Engineering
University of Colorado at Boulder
Background

Hybrid Simulation Development at UB NEES Site
- Control Systems Approach

CU NEES Site
- Numerical Analysis Approach

Unified View
Outline

- What is hybrid simulation?
- Challenges in implementing a hybrid simulation system
- Types of hybrid simulation
- Hybrid simulation algorithms – architecture and equivalence
- Force-based substructuring
Outline

- What is hybrid simulation?
- Challenges in implementing a hybrid simulation system
- Types of hybrid simulation
- Hybrid simulation algorithms – architecture and equivalence
- Force-based substructuring
Multi-story Building

Rest of the structure is undamaged – does not have to be physically built in the laboratory.

Most damage happens here – need better understanding by experimentation.

Earthquake
Interact during the experiment to mimic testing the whole building.
Real-time Hybrid Simulation

- When the physical subsystem has
 - Rate-dependent behavior
 - Inertia effects
- The simulation needs to be carried out in real-time
- Focus of rest of the presentation
Hybrid Simulation is useful for qualification/proof-of-concept testing when the interaction of a component with its surroundings needs to be accurately represented.

For Discovery
- Develop or calibrate Material/system models
 - Hybrid simulation *not very useful* for this purpose
 - Some kind of computation-in-the-loop with geometric reasoning about state-space may be possible

For Qualification
- Examine the performance of a component in its host environment
- Proof of concept tests
- *Interaction* with surroundings may significantly modify input
- Hybrid simulation is useful
Outline

- What is hybrid simulation?
- Challenges in implementing a hybrid simulation system
- Types of hybrid simulation
- Hybrid simulation algorithms – architecture and equivalence
- Force-based substructuring
Feedback interaction in reality

External Input (Eg. Ground Motion)

Substructure 1

Computational

Substructure 2

Physical

Boundary Condition

Work Conjugate

Boundary Condition
In hybrid simulation however ...

NEW DYNAMICS

- **Substructure 1**
 - Computational
 - External Input (Eg. Ground Motion)
 - Boundary Condition

- **Substructure 2**
 - Physical

- **Sensor**

- **Actuator / Transfer Device**
 - Natural Physical Feedback
 - Actuator Feedback

- **Work Conjugate Boundary Condition**
Challenges

- These additional dynamics create significant problems.
- When the structure to be simulated is lightly damped, almost always renders the system unstable.
- Need to develop control algorithms to make hybrid simulation possible.
- Causality → Design of such algorithms requires knowledge about physical substructure (predictive model, implicit integration etc.) → This is a conflict → Robustness of algorithm with respect to modeling of the physical substructure.
- A numerical algorithm need not be causal, a hybrid simulation algorithm does.
Outline

- What is hybrid simulation?
- Challenges in implementing a hybrid simulation system
- Types of hybrid simulation
- Hybrid simulation algorithms – architecture and equivalence
- Force-based substructuring
Hybrid Simulation

Pseudo-dynamic

- External Input (E.g. Ground Motion)
- Substructure 1: Computational
- Substructure 2: Physical
- Boundary Condition
- Work Conjugate Boundary Condition

 Has no inertia effects of interest

- Born from the displacement-based finite element – one of the elements is now physical!
- Algorithms also reflect this
- If in addition, there are no frequency-dependent behavior is the physical substructure – can be done as slowly as we want to

Dynamic

- External Input (E.g. Ground Motion)
- Substructure 1: Computational
- Substructure 2: Physical
- Boundary Condition
- Work Conjugate Boundary Condition

 Has significant inertia effects

- More practical applications necessitate this form of hybrid simulation
- My research is in this area
Hybrid Simulation

Pseudo-dynamic

- Real-time
- Slow

University of Colorado at Boulder
and
University of California at Berkeley
NEES Sites

Dynamic

Hybrid simulation with
Shaking Tables

My research interest
Outline

- What is hybrid simulation?
- Challenges in implementing a hybrid simulation system
- Types of hybrid simulation
- Hybrid simulation algorithms – architecture and equivalence
- Force-based substructuring
Recall

Motivation: Want end of actuator to look like Substructure 1
Introduce a controller

- **External Input**
- **Substructure 1** (Computational)
 - Takes the same input as Substructure 1
 - Boundary Condition
- **Controller**
 - Tries to do the same thing as Substructure 1
- **Substructure 2** (Physical)
 - Work Conjugate
 - Boundary Condition
- **Actuator / Transfer Device**
 - Natural Physical Feedback
 - Actuator Feedback
Model Matching Control

- Controller designed so that ⬤ does the same thing as ⬤
- Part implemented in the computer
Another Paramterization

Internal Model Control - IMC

Part implemented in the computer
Example

\[\frac{1}{ms^2 + cs} \]

[k]

[p]

[\sum]

[\text{External Excitation}]

[\text{Interface Force}]

[\text{Actuator}]

[\text{Physical Substructure}]

[\text{Stiffness} \ K]

[\text{Actuator Model}]

[\text{Modeling Error}]
Time Discretization – Example 1

Numerical Integration

Use Newmark

Discretize at same sampling rate (ex: 1 ms)

Semi-implicit Operator Split Method
Time Discretization – Example 2

Use Newmark

Discretize at **slower** sampling rate (ex: 10 ms)

Discretize at **faster** sampling rate (ex: 10 ms)

Fully implicit method (ex: Shing et al.)
Outline

- What is hybrid simulation?
- Challenges in implementing a hybrid simulation system
- Types of hybrid simulation
- Hybrid simulation algorithms – architecture and equivalence
- Force-based substructuring
Force-based Substructuring

External Input
(Eg. Ground Motion)

Substructure 1
Computational

Imposed Boundary Condition
= Displacement
= Force

Work Conjugate of
Imposed Boundary Condition
= Force

Substructure 2
Physical

WHY?
Need for force-based substructuring - I

- Shake Table
- Laminar Soil Box
- Foundation
- Structural Actuator
- Focus of interest
- Well understood
Need for force-based substructuring - I

- Distributed mass
- Foundation
- Laminar Soil Box
- Shake Table
- Structural Actuator
- Response Feedback
- Has to operate in Force Control

Acceleration input: Table introduces inertia forces

Inertia forces in the Shake Table are introduced by the Table itself.
The three interface DOF are stiffly coupled – poor conditioning and more sensitivity to actuator dynamics.

One of the vertical actuators could be in force control.

Dynamic force control is an interesting problem by itself.
Force control – challenging problem

- Hydraulic actuator fitted with flow-regulating servo-valve
 - Inherently a velocity source
 - Designed to be mechanically stiff for good position control
 - Friction, stick-slip, breakaway forces on seals, backlash cause force noise
 - Stiff oil columns make force control very sensitive to control parameters often leading to instability
For force control, we need a flexible interface
Arrangement for force control

Target Force → 1 / K_{LC} → Command Signal → Actuator in Displacement Control → Measured Force

Structure

Series Spring, K_{LC}

Compensator

Structure Displacement
Explanation of force control scheme

Target Force = \(F \)

Displacement command = \(F / k_{spring} \)

+ Structure Displacement
Small-scale test setup

- Load Cell
- Series Spring
- Structure Disp.
- Transducer
- Actuator
- Structure Disp. Transducer
Actuator displacement control

- Tuned very well in displacement control
- Standard PIDF controller

- Time-delay = 5.6 ms

![Graph showing magnitude and phase versus frequency](image)
Time-delay effect on force transfer function

Need predictive capability in compensator
Smith predictor

Smith Predictive Compensator

\[\frac{1}{K_{LC}} + \sum \text{Corrective Displacement} + \sum \text{Predictive Displacement} + \sum \text{Model of Structure-Spring System} \]

\[T = e^{-st} \]

\[K_{LC} + \sum \text{Series Spring} \]

\[\frac{1}{ms^2 + cs + k} \]

Structure
Force transfer function with predictive compensation

![Graph showing force transfer function with and without compensation. The graph plots magnitude against frequency with a clear distinction between the two conditions.](image-url)
Conclusions

- Hybrid simulation – online combination of computation and physical experimentation
- Real-time hybrid simulation – when physical subsystem had rate-dependent behavior or inertia effects
- Challenge – *added dynamics and feedback paths* created by the transfer system/actuator applying that applied interface conditions between the two substructures.
- Control systems approach and numerical analysis approach shown to be equivalent
- Numerical analysis (finite element) approach for simulation development, control systems approach for stability and robust stability and performance analysis