Compute the response of a SDOF system shown below using “hybrid simulation”. Form four-person teams and divide the roles as follows:

- First member: Left spring
- Second member: Right spring
- Third member: Given resistance and force, compute target displacement
- Fourth member: Compute initial conditions, then, in each step assemble spring forces, request displacement target, disseminate displacement target to springs

System properties:
- Natural period 1 sec; damping ratio 5%:
 - Mass \(m = 0.0761 \) kips-sec\(^2\)/in
 - Stiffness \(k = 1.5 \) kips/in (for each spring)
 - Damping coefficient \(c = 0.0478 \) kips-sec/in
- Spring yield force \(r_y = 0.5 \) kip.

Excitation properties:
- Duration \(t_0 = 0.5 \) sec
- Intensity \(f_0 = 1.5 \) kips
Complete system state (force and displacement) for 10 time-steps with $\Delta t = 0.1$sec

Pre-compute:

\[
a_0 = \frac{1}{m}(f_0 - cv_0 - r_0)
\]

\[
d_{-1} = d_0 - \Delta t v_0 - \frac{\Delta t^2}{2} a_0
\]

\[
\frac{m}{\Delta t^2}
\]

\[
\frac{c}{2\Delta t}
\]

Iterate:

\[
d_{i+1} = \frac{1}{m} \left[\frac{2m}{\Delta t^2} d_i - \left(\frac{m}{\Delta t^2} - \frac{c}{2\Delta t} \right) d_{i-1} - r_i + f_i \right]
\]

Results:

<table>
<thead>
<tr>
<th>Time (sec)</th>
<th>Excitation f (kips)</th>
<th>Total resistance r (kips)</th>
<th>Mass displacement d (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>