Hybrid Simulation: Similitude

Bozidar Stojadinovic, Associate Professor

University of California, Berkeley
Dimensional Analysis

 Qualitative understanding of physical processes

 Basic dimensions (of interest for dynamics of structures):
 - Length (L)
 - Force (F)
 - Time (T)

 Results in non-dimensional factors (Pi-factors) that relate basic dimensions to express the physics of the problem
Scale Factors

- Scale factor
 - Length-force relation:
 - Dictated by preserving the scale of modulus of elasticity (stress)
 - Gravity-time relation:
 - Gravity is the same
 - Effect of gravity may be important
 - Sometimes, we can neglect effects of gravity loads on response
 - Preserve mass density

\[S = \frac{D_{\text{prototype}}}{D_{\text{model}}} \]

\[S_F = S_L^2; \quad S_E = 1 \]

\[S_g = 1; \quad S_T = \sqrt{S_L} \]

\[S_\rho = 1; \quad S_T = S_L \]
Summary: Earthquake Testing

Table 2.11 Summary of Scale Factors for Earthquake Response of Structures

<table>
<thead>
<tr>
<th>(1)</th>
<th>Dimension (3)</th>
<th>Scale Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)</td>
<td></td>
<td>True Replica Model (4)</td>
</tr>
<tr>
<td>Loading</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>Force, Q</td>
<td></td>
<td>$F L^{-2}$</td>
</tr>
<tr>
<td>Pressure, q</td>
<td></td>
<td>$F L^{-2}$</td>
</tr>
<tr>
<td>Acceleration, a</td>
<td>$L T^{-2}$</td>
<td>1</td>
</tr>
<tr>
<td>Gravitational acceleration, g</td>
<td>$L T^{-2}$</td>
<td>1</td>
</tr>
<tr>
<td>Velocity, v</td>
<td>$L T^{-1}$</td>
<td>$S_f^{1/2}$</td>
</tr>
<tr>
<td>Time, t</td>
<td>T</td>
<td>$S_f^{1/2}$</td>
</tr>
<tr>
<td>Geometry</td>
<td></td>
<td>S_f^i</td>
</tr>
<tr>
<td>Linear dimension, l</td>
<td>L</td>
<td>S_l</td>
</tr>
<tr>
<td>Displacement, δ</td>
<td>L</td>
<td>S_l</td>
</tr>
<tr>
<td>Frequency, ω</td>
<td>T^{-1}</td>
<td>$S_f^{-1/2}$</td>
</tr>
<tr>
<td>Material properties</td>
<td>FL^{-2}</td>
<td>S_E</td>
</tr>
<tr>
<td>Modulus, E</td>
<td>FL^{-2}</td>
<td>S_E</td>
</tr>
<tr>
<td>Stress, σ</td>
<td></td>
<td>S_E</td>
</tr>
<tr>
<td>Strain, ε</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>Poisson’s ratio, ν</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>Mass density, ρ</td>
<td>$FL^{+1} T^2$</td>
<td>S_E / S_l</td>
</tr>
<tr>
<td>Energy, E_N</td>
<td>FL</td>
<td>$S_E S_f^3$</td>
</tr>
</tbody>
</table>

* $(gpl/E)_m = (gpl/E)_p^*.$

Harris and Sabnis textbook
Constraints and Goals

Constraints:
- Laboratory size
- Actuator force
- Reaction capacity
- Material (E and mass density)

Goals:
- Enable economical and realistic hybrid simulation of seismic response of structures
- Usually, smaller is cheaper
Mass density is key

Computer models do not have a problem

Physical models:

- Complete similitude (consistent scaling of gravity acceleration):

\[S_T = \sqrt{S_L} \]

- Distorted model (still under gravity):

\[S_T = S_L \]

Analysis by Kumar et.al.
Gravity Matters
(Procedure 1)

Preserve mass density

Scale mass

May conduct test on:

- Prototype
 - Obtain target displacement, scale it down, measure force, scale it up

- Model
 - Scale excitation (amplitude and duration), solve, scale up the response

Methods are equivalent

\[S_\gamma = 1; \quad S_M = S_L^3 \]
Gravity does not Matter
(Procedure 2)

❖ Choose not to scale time
❖ Force and length factors remain
❖ May conduct tests on:
 ■ Prototype
 ■ Model:
 ❖ If test is done on the model, the amplitude of ground motions must be scaled by length scale

\[S_T = 1 \]
A Comparison

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Dimensions</th>
<th>Procedure 1</th>
<th>Procedure 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Length</td>
<td>L</td>
<td>(S)</td>
<td>(S)</td>
</tr>
<tr>
<td>Mass</td>
<td>M</td>
<td>(S^3)</td>
<td>S</td>
</tr>
<tr>
<td>Time</td>
<td>T</td>
<td>S</td>
<td>(1)</td>
</tr>
<tr>
<td>Stress</td>
<td>$ML^{-1}T^{-2}$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Velocity</td>
<td>LT^{-1}</td>
<td>1</td>
<td>S</td>
</tr>
<tr>
<td>Acceleration</td>
<td>LT^{-2}</td>
<td>$1/S$</td>
<td>S</td>
</tr>
<tr>
<td>Force</td>
<td>MLT^{-2}</td>
<td>(S^2)</td>
<td>(S^2)</td>
</tr>
<tr>
<td>Stiffness</td>
<td>MT^{-2}</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Damping</td>
<td>$C = 2\xi\sqrt{KM}$</td>
<td>MT^{-1}</td>
<td>S^2</td>
</tr>
<tr>
<td>Natural frequency ω</td>
<td>T^{-1}</td>
<td>$1/S$</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: Scale factor for quantity i; $S_i = i_p/i_m$; items in parentheses indicate specified factors.

Kumar et.al.
Note on GM Scaling

Many hybrid simulations conducted using Procedure 2 on the model are done without scaling the ground motion amplitude:

- This is equivalent to using an S_L times stronger ground motion record.
- The structure may fail prematurely.
- The response may be highly non-linear.
Similitude and Substructures

- Scaling to measured response and computed response
- Scale for substructures need not be the same!
Similitude and SubStructures

- **Scaling must be consistent:**
 - It is not necessary that the sub-structures have the same scale
 - It is, however, important that the their state data is correctly scaled \textit{wrt.} the integrator scale

- **Errors scale, too!**
 - instruments have fixed error and sensitivity, thus it pays to use as large-scale physical models as possible
Example: Bridge SSI

Bridge deck: computer model
SL=1
ST=1

Foundation: physical model (centrifuge)
SL=81
ST=9

Column: physical model (structures lab)
SL=1
ST=1
Thank you!

Development and operation of the nees@berkeley Equipment Site is sponsored by NSF George E. Brown Jr. NEES grants.

http://nees.berkeley.edu

Contributions to this presentation from Mr. Tammer Botros are gratefully acknowledged.