Introduction to OpenSees and Tcl

Frank McKenna

NEES Hybrid Simulation Workshop
Berkeley, CA
What is OpenSees?

The Open System for Earthquake Engineering Simulation is:

- A software framework for developing sequential, parallel and grid-enabled simulation applications in earthquake engineering using finite element methods.
What is a Software Framework?

• A *framework* is a set of cooperating software components for building applications in a specific domain.

• A framework dictates the architecture of the application. It must represent the design decisions common to the application domain.

• A frameworks is based on the assumption that an architecture will work for most applications within the domain.

• Loose-coupling of components within the framework is essential for extensibility and re-useability for applications.

• *A framework is not a “code”; it is not a .exe*
Conceptual Approach for Simulation

Open-Source Community Simulation Framework

Computation
- Algorithms, Solvers, Parallel/distributed computing

Information Technology
- Software framework, Databases, Visualization, Internet/grid computation

Models
- Simulation models, Performance models, Limit state models
- Material, component, system models
Main Abstractions in OpenSees

ModelBuilder

- Constructs the objects in the model and adds them to the domain.

Domain

- Holds the state of the model at time t and $(t + dt)$

Recorder

- Monitors user defined parameters in the model during the analysis

Analysis

- Moves the model from state at time t to state at time $t + dt$
What Types of Recorder

Recorder

- Element
- Node
- EnvelopeNode
- EnvelopElement
- Database
- FilePlotter
- Display

Renderer

- X11
- OpenGL
- VRML

DataOutputHandler

- StreamHandler
- FileHandler
- DatabaseHandler

Database

- File
- MySQL
- Oracle
- NEES
What is in a Domain

Domain

Element Node MP_Constraint SP_Constraint LoadPattern TimeSeries

ElementalLoad NodalLoad SP_Constraint

Truss ZeroLength ElasticBeamColumn NonlinearBeamColumn(force, displacement) BeamWithHinges Quad(std, bbar, enhanced, u-p) Shell Brick(std, bbar, 20node, u-p, u-p-U) Joint ExperimentalElement

Constant Linear Rectangular Sine Path
Some Other Classes associated with Elements:

- GeomTransformation
- Linear
- Pdelta
- Corotational

Element in Global System

Geometric Transformation

Element in Basic System
Other Classes associated with Elements:

- Material
 - Uniaxial
 - Elastic
 - ElasticPP
 - Hardening
 - Concrete
 - Steel
 - Hysteretic
 - PY-TZ-QZ
 - Parallel
 - Series
 - Gap
 - Fatigue
 - nD
 - Elastic
 - J2
 - TemplateElasto-Plasto
 - FluidSolidPorous
 - Section
 - Elastic
 - Fiber
 - PressureMultiYield (dependent, independent)
What is an Analysis

- Analysis
 - StaticAnalysis
 - TransientAnalysis

- CHandler
 - Penalty
 - Lagrange
 - Transformation

- Numberer
 - RCM
 - MinDegree

- AnalysisModel
 - EquiSolnAlgo
 - Linear
 - NewtonRaphson
 - ModifiedNewton
 - Broyden
 - BFGS
 - KrylovNewton
 - NewtonLineSearch

- SolnAlgorithm
 - StaticIntegrator
 - LoadControl
 - DispControl
 - ArcLength
 - MinUnbalDispNorm
 - TransientIntegrator
 - Newmark
 - HHT
 - CentralDifference

- Integrator
 - BandGeneral
 - BandSPD
 - ProfileSPD
 - SparseGeneral
 - SparseSymmetric

- SystemOfEqn
 - CTest
 - StaticAnalysis
 - TransientAnalysis
Classes for Parallel & Distributed Processing

- **Channel** objects for communicating between processes
- **ObjectBroker** for creating blank objects upon which recvSelf() called
- **Shadow** (Proxy) objects to hide parallelism from existing objects
- **Actor** objects to sit on a remote process & process task requested
- **Machine** objects to start/manage processes (returns Channel to Shadow objects)
OpenSees.exe

- OpenSees is an Open-Source Software Framework for developing Nonlinear Finite Element Applications for both sequential and parallel environments.

- OpenSees.exe is an extension of the Tcl interpreter for finite element analysis which uses this framework. It is an example of an application that can be developed using the framework.
What is Tcl

- Tcl is a string based scripting language.
- Variables and variable substitution
- Expression evaluation
- Basic control structures (if, while, for, foreach)
- Procedures
- File manipulation
- Sourcing other files.
Tcl

• Tcl scripts are made up of commands separated by newlines or ;
• Command syntax:

 command arg1 arg2 ...

• Help
 2. Practical Programming in Tcl and Tk, Brent B. Welch, Prentice Hall.
Example Tcl:

```tcl
>set a 1
>1
>set b a
>a
>set b $a
>1
>set c [expr 2 + $a]
>3
>proc sum {a b}
   return [expr $a + $b]
>sum 2 3
>5
>set c [sum 2 3]
>5
>expr 2 + $a
>5
>set fileId [open tmp w]
>??
>puts $fileId "hello"
>close $fileId
>type tmp
hello
>
>source Example1.tcl

for {set i 1} {$i < 10} {incr i 1} {
   puts "i equals $i"
}
set sum 0
foreach value {1 2 3 4} {
   set sum [expr $sum + $value]
}
set $sum
>10
>proc guess {value} {
   global sum
   if {$value < $sum} {
      puts "too low"
   } else {
      if {$value > $sum} {
         puts "too high"
      } else {
         puts "you got it!"
      }
   }
}
> guess 9
too low
>
>proc sum {a b}
   return [expr $a + $b]
>sum 2 3
>5
>set c [sum 2 3]
>5
>open tmp w
>??
>puts $fileId "hello"
>close $fileId
>type tmp
hello
>source Example1.tcl
```
Commands to Tcl for OpenSees

- For OpenSees we have added commands to Tcl for finite element analysis:
 1. Modeling – create nodes, elements, loads and constraints
 2. Analysis – specify the analysis procedure.
 3. Output specification – specify what it is you want to monitor during the analysis.
Model Generation:

*Adds the modelling commands to the interpreter.

• BasicBuilder

```
model Basic -ndm ndm? <-ndf ndf?>
```

This command now adds the following commands to the interpreter:

- node
- element
- pattern
- fix
- equalDOF
- pattern
- load
- eleLoad
- sp

- mass
- fix
- fixX
- fixY
- fixZ
- uniaxialMaterial
- nDMaterial
- section
- geomTransf

- block2D
- block3D
- patch
- layer
- fiber
Analysis

Solver

StaticAnalysis
TransientAnalysis

CHandler

Penalty
Lagrange
Transformation

Numberer

RCM
MinDegree

AnalysisModel

SolnAlgorithm

EquisolnAlgo
Linear
NewtonRaphson
ModifiedNewton
Broyden
BFGS
KrylovNewton

StaticIntegrator
LoadControl
DispControl
ArcLength
MinUnbalDispNorm

Integrator

SystemOfEqn

BandGeneral
BandSPD
ProfileSPD
SparseGeneral
SparseSymmetric

constraints type? args...

numberer type? args...

algorithm type? args...

integrator type? args...

system type? args...

analysis type? args...

analyze args ...
Example Model:

```
model Basic -ndm -ndf 2
node 1 0.0 0.0
node 2 144.0 0.0
node 3 168.0 0.0
node 4 72.0 96.0
fix 1 1 1
fix 2 1 1
fix 3 1 1
uniaxialMaterial Elastic 1 3000.0
element truss 1 1 4 10.0 1
element truss 2 2 4  5.0  1
element truss 3 3 4  5.0  1
Pattern Plain 1 “Linear” {
  load 4 100.0 -50.0
}
```
Example Analysis:

• Static Nonlinear Analysis with LoadControl

 constraints transformation
 numberer RCM
 system BandGeneral
 test NormDispIncr 1.0e-6 6 2
 algorithm Newton
 integrator LoadControl 0.1
 analysis Static
 analyze 10

• Transient Nonlinear Analysis with Newmark

 constraints transformation
 numberer RCM
 system BandGeneral
 test NormDispIncr 1.0e-6 6 2
 algorithm Newton
 integrator Newmark 0.5 0.25
 analysis Transient
 analyze 2000 0.01
And Why do Finite Element Analysis
NCEER frame tested at the Taiwan facility

Centerline model and model with joint comparison
OpenSees Community Website

- Web site: http://opensees.berkeley.edu/
- User Pages
 - Command Manual
 - Examples Manual
 - Browse the Source Code
 - Message Board
 - Bug Reporting!